Differential regulation of collecting duct Na+, K+-ATPase and K+ excretion by furosemide and piretanide: role of bradykinin.

نویسندگان

  • Bénédicte Buffin-Meyer
  • Mauricio Younes-Ibrahim
  • Ghazi El Mernissi
  • Lydie Cheval
  • Sophie Marsy
  • Michèle Grima
  • Jean-Pierre Girolami
  • Alain Doucet
چکیده

In response to chronic treatment with furosemide, collecting ducts adapt their function to the initial loss of Na+ to prevent further Na+ loss and extracellular volume decrease. This adaptation, which includes the overexpression of Na+, K+-ATPase, is thought to account for most of the kaliuretic effect of furosemide. Because piretanide is reported to be less kaliuretic than equidiuretic doses of furosemide, the authors compared the effects of 1-wk treatment with the two loop diuretics on urinary potassium excretion and on Na+, K+-ATPase activity in the collecting duct. At equidiuretic and equinatriuretic doses, furosemide increased urinary potassium excretion as well as collecting duct Na+, K+-ATPase activity, whereas piretanide had no effect on either parameter. These effects of furosemide were curtailed by concomitant administration of the angiotensin-converting enzyme inhibitor enalapril, but they were not altered either by clamping changes in plasma aldosterone or by blocking type I angiotensin receptors. Treatment with the antagonist of bradykinin B2 receptors Hoe140 mimicked the two effects of furosemide. In addition, the effects of Hoe140 and furosemide were not additive. Finally, piretanide increased urinary bradykinin excretion, whereas furosemide did not. These results suggest that induction of collecting duct Na+, K+-ATPase (a) accounts for the kaliuretic effect of furosemide, (b) is independent of the renin/angiotensin/aldosterone system, (c) results from increased Na+ delivery to the collecting duct and enhanced intracellular Na+ concentration, and (d) is prevented in piretanide treated rats by increased bradykinin production that may limit apical Na+ entry in collecting duct principal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

The role of Na+-K+-ATPase in the basic and rate-dependent properties of isolated perfused rabbit Atrioventricular Node

Introduction: Ouabaine is a well-known atrioventricular (AV) node depressant agent, but its effects on functional properties of the AV node have not been cleared. The aim of the present study was to determine how ouabaine administration modifies the rate-dependent properties of the AV node. Methods: Selective stimulation protocols were used to quantify independently electrophysiological prop...

متن کامل

Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes.

In puromycin aminonucleoside (PAN)-treated nephrotic rats, sodium retention is associated with increased (Na+/K+)-ATPase activity in the cortical collecting ducts (CCD). This study was undertaken to determine whether stimulation of (Na+/K+)-ATPase in the CCD is a feature of other experimental nephrotic syndromes, whether it might be responsible for renal sodium retention, and whether it is medi...

متن کامل

Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention.

In vitro studies suggest that collecting duct-derived (CD-derived) endothelin-1 (ET-1) can regulate renal Na reabsorption; however, the physiologic role of CD-derived ET-1 is unknown. Consequently, the physiologic effect of selective disruption of the ET-1 gene in the CD of mice was determined. Mice heterozygous for aquaporin2 promoter Cre recombinase and homozygous for loxP-flanked exon 2 of t...

متن کامل

TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct.

The transient receptor vanilloid-4 (TRPV4) is a mechanosensitive, swell-activated cation channel that is abundant in the renal distal tubules. Immunolocalization studies, however, present conflicting data as to whether TRPV4 is expressed along the apical and/or basolateral membranes. To disclose the role of TRPV4 in flow-dependent K(+) secretion in distal tubules in vivo, urinary K(+) excretion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2004